Course Code		Allied – IA	T/P	С	H/W		
22BECA1	Electronic Measu	rements and Instruments	Т	3	3		
Objectives	To learn about digital i	nstruments					
	To familiarize in R, L,	C measurements					
	To familiarize in oscill	oscopes and function generators					
	To get knowledge in an	alyzing instruments					
	DIGITAL INSTRUMENTS						
I]nit_I	Digital Instruments basics – D	gital displays – Digital counters – AI	DC and I	DAC –	Digital		
	Voltmeter – Digital Multimete	r – Digital Frequency meter – Frequ	ency me	ter acc	uracy –		
	Time and ratio measurements.						
	R, L AND C MEASUREME	NTS					
	Low, High and Precise Resis	tance Measurements - Voltmeter and	d Amme	ter me	thods		
Unit-II	-Substitution method – Whea	tstone Bridge – Low, High and Precis	se measu	rement			
	methods– AC bridge theory –	Capacitance bridges – Inductance brid	ges – Mı	ılti funo	ction		
	Impedance bridge – Digital R,	C, L measurements – Digital LCR me	eter - Qr	neter.			
	OSCILLOSCOPES						
Unit-III	CRT – Dual trace Oscilloscopes – Voltage, frequency and phase measurements – Analog						
	storage oscilloscopes – Digital storage oscilloscopes – Sampling oscilloscopes.						
	SIGNAL GENERATORS			-			
Unit-IV	Low frequency signal generat	ors – Function generators – Pulse gen	erators –	- Sweej	2 2		
	frequency generators – RF signal generators – Frequency synthesizer – Arbitrary waveform						
	generator – DSO applications – Representative DSO						
	RECORDING AND WAVE	FORM ANALYZING INSTRUMEN	NTS		D' '/ 1		
Unit-V	Strip chart recorders – X-Y Plotters – Plotting device characteristics – Plotter – Digital						
	waveform recorder / analyzer	– Distortion meter – Spectrum analy	/zer - D	igital			
D.C.	spectrum analyzer – waveform	analyzing instruments					
Reference and	l extbooks:-						
Devid A De	(2002) "Electronic measurem	ante and Lestin marte? Prostice Hell a	ftadia 2				
David A.Be	(2003), Electronic measurem	enis ana Instruments, Prenuce Hall o	I India,2/	е,.			
R.S. Sedha,	Electronic measurements and In	nstrumentation". Chand					
Reference	References:						
Alan S Morr Heinem	s, (2001) " <i>Measurement and In</i> . nn.	strumentation Principles", 3 rd Edition,	Butterwo	orth-			

J P Navani, "Electronic Measurement And Instrumentation", S Chand Publications

A.K. Sawhney,(2015), "A Course in Electronic Measurements and Instrumentation", Dhanpat Rai & Co.,

Outcomes	After completion of the course students will be able
	To use digital displays, counters and meters
	To explain the principles of AC/DC bridges and their measurements
	To recognize the applications of oscilloscopes in measurements
	To handle function generators for waveform generation
	To study the outputs of waveform/spectrum analyzer

Course Code	Allied Practical – IA	T/P	С	H/W		
22BECAP1	Electronic Measurements Lab	Р	2	2		
Objectives	To familiarize various measuring devices					
	To familiarize measuring circuits using Op-amps					
	To study various bridge circuits					
Any 10 Exp	eriments					
1. Use of	of function generator to generate different types of waveforms					
2. Use of	of DSO to measure amplitude and frequency					
3. Meas	urement of phase and frequency using Lissajou's figure in CRO					
4. ADC	using Op-amp					
5. DAC	using Op-amp					
6. Instru	imentation amplifier					
7. Dete	mination of impact of filter on rise time and fall time of pulses					
8. Meas	urement of resistance using Kelvin's double bridge					
9. Meas	urement of resistance using Wheatstone bridge					
10. Meas	urement of inductance using Maxwell's bridge					
11. Meas	urement of inductance using Hay's bridge					
12. Meas	urement of capacitance using Schering bridge					
13. Mea	surement of capacitance using Desauty's bridge					
14. To d	etermine high resistance by Megohm Bridge method					
Reference and	Textbooks:-					
R.K.	Rajput,(2008) "Electrical and Electronic Measurements and Instrument	ation", S	5.			
	Chand.					
Syee	Akhtar Imam, Vibhav Kumar Sachan, (2020), "Electronic Measuremen	t and				
	Instrumentation", Wiley.					
http://vlabs.iitkgp.ac.in/asnm/exp17/index.html						
Outcomes	After completion of the course students will be able					
	To measure various parameters using CRO, DSO					
	To design AC/DC bridge circuits and measure capacitance	, resistar	nce ar	d		
	inductance					

Course Code	: Allied – I B	T/P	С	H/W		
22BECA2	Microprocessor/Microcontroller and Applications	Т	3	3		
Objectives	To get fundamental knowledge in microprocessor 8085					
	 To learn assembly language programming concepts 					
	To know interfacing techniques					
	To familiarize with microcontroller 8051 and its applications					
	INTEL OVOD Architecture and instruction set					
Unit I	Introduction to INTEL8085 - Register structure - Pin details and Instruction cost Addressing m	iunction	s - stud fle	0.000		
0111-1	Data transfer group - Arithmetic group - Logical group - Branch- St	ack I/O a	nd mac	igs - chine		
	control group.	iek, 1/0 u	ina inav	/iiiie		
	Assembly Language Programming					
	Machine language-Assembly language-one pass and two pass	ass asso	embler-	-Stacks		
Unit-II	subroutines- Macro- Micro programming - Data transfer and data n	nanipulati	on pro	grams-		
	Single byte and Multi byte addition- Complement - Shift - Mas	k- Large	r – sm	aller –		
	Array manipulations- Sum of Series.					
	Peripherals Interfacing of 8085	1	. 11			
Unit-III	8255 Programmable Peripheral Interface $- 82/9$ Keyboard and dis	splay con	troller	_ 		
	ADC/DAC Interfacing - 8255 Programmable Interval Timer - 8259 J	Programn	nable li	nterrupt		
	8051 Mianagentreller					
	Features of 8051–Pin description of 8051 - 8051 Microcontrolle	r Archite	ecture	- 8051		
	oscillator and clocks - Program counter and data pointer – A an	d B Reg	isters –	- Bank		
Unit-IV	Registers -Flags –PSW - Internal RAM - Stack and Stack point	ter - spe	cial Fu	nction		
	Registers-Memory organization - I/O Port – Interrupt – Timer and C	Counter –	Serial	I/O		
	Port.					
	8051 Programming and Applications					
Unit-V	8051 instruction set - Addressing modes - Assembly language p	rogramm	ing –	I/O		
	port programming – Timer and counterprogramming –	Serial cor	nmunic	cation		
Df	- Interrupt programming - Interfacing with 8051: ADC, DAC and S	tepper me	otor.			
Reference and	I TEXIDOOKS:-					
Mohammed	Ali Mazidi and Janice Gillisnie Mazidi, "The 8051 Microcontroller an	dEmbedd	ed			
Systems	" Pearson Education Asia 2003	uLinocuu	cu			
Bystem.		• • • •				
Ram. B, "Fu	ndamentals of microprocessor and microcomputers", Dhanpat Rai &S	ons, 2012	2			
Ramesh S. C	Gaonkar, "Microprocessor Architecture Programming and applicationw	rith 8085'	', 5th			
Edition,	PHI, 2002.					
References:						
IZ		. 1: 4:,	and			
Kenneth. J.	Ayaia, The 8051 Microcontroller Architecture Programming and Ap	plication	,2			
Edition	, remain international rubilshels (india), 1990					
Rafiquzhma	n. M, "Microprocessors Theory and Applications: Intel and Motorola",	, PHI				
Pvt.Ltd	., 2003.					
https://nptel	ac.in/courses/106/108/106108100/					
Outcomes	After completion of the course students will be able					
	To define architecture, addressing modes and instruct	ion set in	8085			
	 To explain assembly language programming in 8085 					
	To discuss 8255, 8279, 8253, 8259 and 8237 interfacing					
	To recall microcontroller 8051 architecture and pin co	onfigurati	on			
	To understand programming and interfacing in 8051					

Course Code:	Allied Practical – I B	T/P	С	H/W			
22BECAP2	Microprocessor/Microcontroller ApplicationsLab	Р	2	2			
Objectives	To write simple programs in 8085 / 8051						
-	> To write programs to interface ADC, DAC, Stepper motor etc.						
Any 10	Experiments						
1. Additio	n of 8 / 16 bit Data using 8085						
2. Subtrac	2. Subtraction of 8 / 16 bit Data using 8085						
3. Multipl	ication of 8 bit Data using 8085						
4. Divisio	n of 8 bit Data using 8085						
5. Smalles	st / largest of N Numbers						
6. To arra	nge in ascending / Descending Order						
7. Additio	n of 8 / 16 bit Data using 8051						
8. Subtrac	tion of 8 / 16 bit Data using 8051						
9. Multipl	ication of 8 bit Data using 8051						
10. Divisio	n of 8 bit Data using 8051						
11. Logical	operations using 8051						
12. ADC In	iterfacing						
13. DAC In	iterfacing						
14. Stepper	• Motor interfacing						
Reference and 7	`extbooks:-						
A. Nagoor Kar	ni, "Microprocessor and Microcontroller", McGraw Hill Education, 201	6.					
V. Vijayendra 2009.	n, "Fundamental of Microprocessor 8085: Architecture Programmin	g, and	Interf	acing",			
Outcomes	After completion of the course students will be able						
	To execute and verify the outputs of elementary programs i	n 8085	/ 8051	l			
	To analyze and verify the performance of ADC/DAC/ Step	per mot	or				
	interfacing						

Course Code:		Allied – II A	T/P	С	H/W			
22BECA3		Principles of Communication System	Т	3	3			
Objectives	\triangleright	To learn various modulation techniques in communication						
	\triangleright	To be aware of working of domestic electronic appliances.						
	To get knowledge in radio communication systems							
	Amplitude Modulation							
	Sourc	es of Noise – Classification of Noise – External and Internal Noise	ses – Sigi	nal Noi	se Ratio			
Unit-I	– Am	plitude Modulation – Expression - Different forms of Amplitude	Modulati	lon - D	SBSC –			
	SSB 1	techniques – Transmitters – Types – AM Modulators – Demodul	ation - P	IM De	lectors –			
	Enog	vers.						
	Frequ	aency and r hase woodlation ency Modulation Expression of FM wave Dre Emphasis a	nd De E	mphas	is FM			
	Versu	AM = FM Generation – Methods of FM generation – Read	itance M	odulate	r - FM			
Unit-II	transr	nitters – Direct / indirect FM transmitter – Demodulation –	FM Rece	eivers	- Phase			
	Modu	lation – Expression – Generation, Transmission and Reception –	Comparis	son of A	AM, FM			
	and P	M.	1		,			
	Pulse	Modulation						
	Pulse	Pulse Modulation - Quantization - Sampling - Sampling Techniques - Classification - PAM,						
Unit-III	PTM,	PWM, PPM – A/D signals – Principle of Digital communication	tion – Ty	ypes of	Digital			
	Pulse	Pulse Modulators - PCM - DM - Digital Carrier Modulation - ASK, FSK -						
	Multi	Multiplexing – Transmission and Reception of TDM, FDM.						
	Dome	estic Electronics	1 . 1	т				
	Anter	$\ln a - Antenna Reciprocity - Antenna as a Transmission Line - Re.$	ated I eri	ms - 1y	/pes			
Unit-IV	– UF	- UHF & MW – Special Antennas – Colour Television – Primary, Secondary and						
	Comp	Complementary Colours – Colour I v Kecelver – Camera – Picture Tube – Gun Colour –						
	Dlag	ns - 1 ransmission - Reception - Receiver - Flat Panel 1 V - 5	DIV – L Mawita					
	Plasi	10 - 10 Studio - Cable $10 - CAT = 0$ Hough internet - DTH -	wients.					
	Radai	Communication Systems - Principles – Functions – Classification – Pulse Radar – MTI Ra	dar – Reg	acon Re	adar			
Unit V	-CW	/ Padar – Tracking Radar – Laser Radar – Radar Displays – Sa	tellite Co	mmuni	ication -			
Unit-v	Class	ification – Related Terms – Antenna Beam Width and Size – S	atellite (⁷ ommu	nication			
	Syste	m = earth Station = Satellite Station.		Johima	meation			
Reference a	nd Text	books:-						
Text Books	:							
M.L.Ana	M.L.Anand, "Principles of Communication Engineering", CRC Press, 2022.							
Herbert 7	Faub and	d Donald L Schilling, "Principles of Communication Systems" 4t	hEdition	тмн				
Four	th reprin	nt 2015.						

References:

George Kennedy, Bernard Davis, S. R. M Prasanna, "Electronic CommunicationSystems", McGraw Hill Education, 2017.

Simon Haykin and Michael Moher, "Communication Systems", 5th edition, Johnwiley& Sons.

Wayne Tomasi, "Advanced Electronic Communication Systems", 6thEdition, Pearson Education, 2009.

Outcomes	After completion of the course students will be able
	To understand AM principle, transmission and detection
	To discuss frequency modulation and demodulation techniques
	To analyze phase modulation and demodulation
	To define PAM, transmission and reception
	> To describe electronic appliances like antenna, colour TV, cable TV and DTH
	> To realize the principles of radar and satellite communication

Course Code:	:	Allied Practical – II A	T/P	С	H/W		
22BECAP3		Communication System Lab	Р	2	2		
Objectives	\triangleright	To design modulation and demodulation circuits					
	\triangleright	To construct shift keying modulation and demodulation circuits					
Any 10 Experiments							
1. Ampl	1. Amplitude Modulation						
2. Ampl	itude D	e Modulation					
3. Frequ	lency M	Iodulation					
4. Frequ	ency D	emodulation					
5. Pulse	Positio	n Modulation					
6. Pulse	Amplit	tude Modulation					
7. Pulse	Width	Modulation					
8. Ampl	itude S	hift Keying Modulation					
9. Ampl	itude S	hift Keying Demodulation					
10. Frequ	ency Sl	hift Keying Modulation					
11. Frequ	ency Sl	hift Keying Demodulation					
12. Frequ	ency D	ivision Multiplexing					
13. Time	Divisio	on Multiplexing					
14. Pre E	mphasi	s and De-emphasis					
Reference and	Textb	ooks:-					
B Sasikala	B Sasikala & S Poornachandra Rao, "Handbook of Experiments in Electronics and Communication						
Engineering", 1/e, Vikas Publishing,							
Outcomes	Outcomes After completion of the course students will be able						
		To analyze the performance of modulation and demo	dulatio	n circu	uits		
		To demonstrate shift keying modulation and demodu	lation e	xperii	nents.		

Course Code: Allied – II B T/P				H/W		
22BECA4	Internet of Things and its Applications	Т	3	3		
Objectives	To familiarize with the basics of IoT					
	To learn technologies and protocols in IoT					
	To study communication protocols in IoT					
	10 get knowledge in Development tools and security of 101					
	Uverview of 101 Advantages and Disadvantages of IOT — Characteristics of IOT — IOT and it is					
Unit-I	Advantages and Disadvantages of IOI – Characteristics of IOI –	– IOT ag	pplicati	ons –		
	levels – IOT Eco system – Value chain and Global value chain – Typ	es of net	vorks	es anu		
	Int Technologies and Protocols		WOIK5			
	Bluetooth – BLE – Wifi – Low power wifi - LiFi – Cellular networks – Z-Wave – RFID –					
Unit-II	X-10 – Sigfox – Zigbee – Low Range Wide Area Network – 6LoW	pan – 5G	- Low	Power		
	Wide Area Networks – Thread – Near Field Communications – G	SM – Gl	PRS - 1	LTE-A		
	–Wireless Sensor Network					
	Communication Protocols					
Unit-III	Application Layer Protocols – Transport Layer Protocols – Network	Layer Pi		s —		
	Link Layer Protocols – IOI Enabling technologies – Building b	locks of	101 -	1c		
	Development Tools of IoT	lunication	1 mode	15		
Unit-IV	Various tools used in IOT – Introduction to Arduino – Types	of Ardu	ino bo	oards –		
	Introduction to Arduino IDE – Compiling, debugging, uploading an	d running	a file			
	Security And Future of Iot	U	,			
	Security – Cyber Security – Need, types and challenges – Privacy f	for IOT e	nabled	devices		
Unit-V	- Major IOT leaks - Security for consumer devices - Security lo	evels – P	rotectir	ng IOT		
	Devices - Future of IOT Ecosystem - Cryptography - Artificial	Intelliger	nce - M	lachine		
	learning.					
Reference and	l Textbooks:-					
Text Books:						
Arshdeep	Bahga, Vijay Madisetti, —Internet of Things – A hands-on approa	ichl, Univ	versities	Press,		
2015.						
Sathish Jai	n and Shashi Singh, "Internet of Things and its Applications: Madesim	ple", BP	В			
Publis	hers, 2020.					
Simone Ci	rani, Gianluigi Ferrari, Marco Picone, "Internet of Things Architecture	es,Protoco	ols and			
Standa	ards", Wiley, 2019.	,				
B oforoncos						
Kelel ences.			_			
David Han	es, G. Salgueiro, P. Grossetete, "IoT Fundamentals: Networking Tech	nologies,	Protoc	ols		
and	Use Cases for Internet of Things", Cisco Press, 2017.					
Sachi Nano	dan Mohanty, Jyotir Moy Chatterjee, Suneeta Satpathy "Internet of Thi	ngs and I	ts			
Ap	plications", Springer, 2022.					
B.K. Tripa	thy, J. Anuradha "INTERNET OF THINGS (IoT)-Technologies Appl	ications.				
Cha	allenges, and Solutions", Taylor & Francis, 2018	,				
Outcomos	After completion of the course students will be able					
Jucomes	To understand architecture components and characteris	tics of Io	Г			
	To analyze IoT technologies - wifi lifi GSM GPRS wireless sensor network					
	 To realize communication protocols in IoT 					
	> To describe arduino types, boards and compiling					
	> To discuss security and IoT in cryptography, AI and ML					

Course Code:Allied Practical – IIBT/PC							
22BECAP4	Ļ	IoT Applications Lab	Р	2	2		
Objectives		> To program Arduino to control lights, motors, and other devices	\$				
To test, debug, and deploy the Arduino to solve real world problems							
Any 10 Experiments							
1.	1. Arduino software installation						
2.	Desig	n of digital DC voltmeter and Ammeter					
3.	Interf	ace LED / Buzzer with Arduino					
4.	Interf	ace IR / LDR sensor with Arduino					
5.	Interf	ace temperature sensor with Arduino					
6.	Interf	ace humidity sensor with Arduino					
7.	Interf	ace motor using relay Arduino					
8.	Contr	olling domestic appliances using Arduino					
9.	Remo	ote monitoring using Arduino					
10.	Interf	ace blue tooth with Arduino					
11.	Stori	ng and retrieving data from cloud with Arduino					
12.	Perfo	rming basic SQL quarries using MySQL data base on Arduino					
13.	Subse	cribing MQTT broker for data on Arduino					
14.	Creat	ing TCP / UDP server on Arduino					
Reference a	nd Te	xtbooks:-					
Adeel Jave	ed, "Bi	uilding Arduino Projects for the Internet of Things", Apress, 2016					
https://ww	<u>w.e</u> e <u>.i</u>	itkgp.ac.in					
https://ww	<u>w.cit</u> c	hennai.edu.in					
https://ww	w.del	taww.com					
Outcomes After completion of the course students will be able > To design Arduino based digital meters for measurements > To interface LED/LDR/Sensor with Arduino > To create TCP/UDP server on Arduino							